Borica

Organic Titanates and Zirconates – promote adhesion of coatings to difficult substrates, catalyze crosslinking, and increase heat resistance of coatings

  • TYTANTM Titanate Coupling & Dispersing Agent Titanate Coupling Agents are molecular bridges at the interface between inorganic filler such as CaCO3, BaSO4, graphite, carbon black, silica and metal oxide with polymer such as PP, PE, PVC, PBT, PET, ABS and rubbers. When incorporated into polymer systems, the coupling agent could improve filler loading, pigment dispersion, impact strength hence reduce embrittlement. Silane coupling agent only reacts with hydroxyl group on the filler surface via water condensation of silanol-siloxane process, therefore, it is suitable for glass, alumina hydroxide, magnesium hydroxide and metal powder etc. The advantage of titanate coupling agents is that they react not only with the hydroxyls but the free protons on the inorganic interface, which results in the formation of organic monomolecular layers on the inorganic surface forming the bonding for polymers.
  • Tytan S3 is an ethylacetoacetate titanate silane chelate used commonly as important additives in moisture curing room temperature vulcanizable (RTV) silicone sealant, catalyst for silane and silicone cross linking as well as moisture scavenger for sealant. Tytan S3 is sensitive to water and will react and cure immediately while in contact with moisture at room temperature.
  • Tytan AP310 is an ethyl citrate titanium complex that can be used as an adhesion promoter for printing, crosslinker for paints and as a catalyst for esterification. Due to its chelated structure, Tytan AP310 shows delayed reaction at ambient temperature and thus facilitates storage stability of inks.
  • Tytan AP910D is an ethyl citrate zirconium that can be used as an adhesion promoter for printing, crosslinker for paints and as a catalyst for esterification. Due to its chelated structure, Tytan AP910D shows delayed reaction at ambient temperature and thus facilitates storage stability of inks. Compared with organo-titanate adhesion promoters, it shows good compatibility with PVB, CAB and CAP inks and provides minimal discoloration during the sterilizing process in the printing of milk pouches. As the temperature increases above 60oC, the zirconate can interact with functional groups such as -OH, -COOH, -NH2 in the polymer or substrate.
  • Tytan AP110 is modified from Tytan AP100, which is aiming for better compatibility with various ink formulations. Tytan AP110 is proved offering the same adhesion performance as Tytan AP100, in addition, preventing the viscosity changed during printing process.
  • Tytan CA 2E is a formulated catalyst suitable for ethylene dimerization process for high purity 1-butene production. The liquid phase catalyst could avoid isomerization of 1-butene to 2-butene.
  • Tytan TNPT is used in a variety of industrial applications e.g. as an esterification and transesterification catalyst, as an olefin polymerisation catalyst, as an adhesion promoter, as a crosslinking agent for hydroxylic compounds and as a component of heat and corrosion resistant paints.
  • Tytan AQ5000 is used as an advanced polyesterification and transesterification catalyst based on the latest titanate technology. Tytan AQ5000 is recommended for the manufacture of unsaturated polyester, polyester, PET, PTT and PBT without sacrificing the performance when the water content increased in the system. Therefore, Tytan AQ5000 delivers reliable and high performance during the processing.
  • TYTAN Titanate Coupling & Dispersing Agents are molecular bridges at the interface between inorganic fillers (such as CaCO3, BaSO4, graphite, talc, carbon black, silica and metal oxides) and polymers (such as PP, PE, PVC, PBT, PET, ABS and rubbers). When incorporated into polymers, the coupling agent could improve filler loading, pigment dispersion, processability and composite mechanical properties to achieve the specification desired. As a comparison, silane coupling agents only reacts with hydroxyl groups on the filler surface via water condensation of silanol-siloxane process, therefore it is suitable for glass, alumina hydroxide, magnesium hydroxide etc. The advantage of titanate coupling agents is that they not only react with hydroxyls, but also the free protons on the inorganic interface, which results in the formation of organic monomolecular layers on the inorganic surface forming the bonding for polymers. Dosage is up to the property required and the filler type used is dependent on its surface area, the larger the surface area, the more Tytan titanate coupling & dispersing agent are needed. As a guide, the general dosage range is 0.2% ~ 2.0% by weight of filler.
  • Tytan CX200 is a chelated Titanium Alkanolamine Complex developed as a rheology modifier for emulsion paints. Tytan CX200 reacts with colloid stabilized binders to impart a thixotropic structure to the paint through shear sensitive hydrogen bonding. Tytan CX200 has no to little effect on the rheology of emulsion paints based on surfactant stabilized binders. Tytan CX200 has improved compatibility with a broad range of paint formulations but it is still recommended that use of Tytan CX200 shall always be based on sample testing to evaluate potential interaction with other components or additives of the paint formulation.  
  • Tytan CX400 is titanium chelate of alkanolamine titanate complex and developed as a rheology modifier for use in emulsion paints. Tytan CX400 reacts with colloid stabilized binders to impart thixotropic structure. Tytan CX400 is suitable for VOC free paint.

Title