Borica

Organic Titanates and Zirconates – promote adhesion of coatings to difficult substrates, catalyze crosslinking, and increase heat resistance of coatings

  • Out of stock
    Tytan AP20 is primarily designed to strongly increase adhesion of solvent based inks to a variety of plastics used for food packaging or other purposes, but also pigment distribution and heat sealing resistance are improved allowing perfect hiding power and appearance of printing on otherwise problematic substrates. Tytan AP20 however is more user-friendly as the addition of the ethanol strongly reduces the pour point and as such the possibility for crystallization at low to normal temperatures. Tytan AP20 can only be used in solvent based inks and coatings.
  • Replacement for PU catalysts, especially for tin-based catalysts like DBTL. One- and two- component polyurethane systems, e.g. for automotive refinish coatings, general industrial coatings, coil coatings formulated with blocked isocyanates. Condensation reaction in RTV silicone resins and accelerate the cross-linking process. Catalyst for PU foams.
  • Tytan coupling agents can enhance the dispersion of inorganic fillers in polymer systems such as PP, PE, by modifying the surface of filler particles. The content of fillers can therefore be increased, saving the cost of polymer, while maintaining the mechanical property.
  • Tytan ZPN is aqueous solution of ammonia zirconium lactate and is used in paint manufacture to improve gel strength, anti-sagging, paint structuring and levelling. Tytan ZPN shall be added at the last stage after formulated paint with typical level between 0.3 ~ 1.5%. Tytan ZPN works well in the surfactant stabilized paint as well as colloid stabilized paint.
  • Tytan CX400 is titanium chelate of alkanolamine titanate complex and developed as a rheology modifier for use in emulsion paints. Tytan CX400 reacts with colloid stabilized binders to impart thixotropic structure. Tytan CX400 is suitable for VOC free paint.
  • Tytan CX200 is a chelated Titanium Alkanolamine Complex developed as a rheology modifier for emulsion paints. Tytan CX200 reacts with colloid stabilized binders to impart a thixotropic structure to the paint through shear sensitive hydrogen bonding. Tytan CX200 has no to little effect on the rheology of emulsion paints based on surfactant stabilized binders. Tytan CX200 has improved compatibility with a broad range of paint formulations but it is still recommended that use of Tytan CX200 shall always be based on sample testing to evaluate potential interaction with other components or additives of the paint formulation.  
  • Tytan CX100 is a chelated Titanium Alkanolamine Complex developed as a rheology modifier for emulsion paints. Tytan CX100 reacts with colloid stabilized binders to impart a thixotropic structure to the paint through shear sensitive hydrogen bonding. Tytan CX100 has no to little effect on the rheology of emulsion paints based on surfactant stabilized binders. Use of Tytan CX100 shall always be based on sample testing to evaluate potential interaction with other components or additives of the paint formulation.
  • TYTAN Titanate Coupling & Dispersing Agents are molecular bridges at the interface between inorganic fillers (such as CaCO3, BaSO4, graphite, talc, carbon black, silica and metal oxides) and polymers (such as PP, PE, PVC, PBT, PET, ABS and rubbers). When incorporated into polymers, the coupling agent could improve filler loading, pigment dispersion, processability and composite mechanical properties to achieve the specification desired. As a comparison, silane coupling agents only reacts with hydroxyl groups on the filler surface via water condensation of silanol-siloxane process, therefore it is suitable for glass, alumina hydroxide, magnesium hydroxide etc. The advantage of titanate coupling agents is that they not only react with hydroxyls, but also the free protons on the inorganic interface, which results in the formation of organic monomolecular layers on the inorganic surface forming the bonding for polymers. Dosage is up to the property required and the filler type used is dependent on its surface area, the larger the surface area, the more Tytan titanate coupling & dispersing agent are needed. As a guide, the general dosage range is 0.2% ~ 2.0% by weight of filler.
  • Tytan S2 is a titanium ethylacetoacetates used commonly as important additives in moisture curing room temperature vulcanizable (RTV) silicone sealant, catalyst for silane and silicone cross linking as well as moisture scavenger for sealant. Tytan S2 is sensitive to water and will react and cure immediately while in contact with moisture at room temperature.
  • Tytan AQZ30 is a Zirconium triethanolamine complex that readily hydrolyses in water to produce a hydroxyl zirconium chelate. This will readily crosslink with –OH and –COOH groups in solvent and aqueous systems to form strong gels and has the potential to act as an adhesion promoter. AQZ30 is an effective rheology modifier for functionalised guar derivatives for secondary and tertiary recovery of oil and gas wells. It has the ability to crosslink in both water-borne and solvent-borne coatings and provides adhesion in water-borne and solvent-borne printing inks. Compared with titanium based alkanolamines, AQZ30 offers prevention against yellowing of the polymer in use.
  • Tetra 2-etehylhexyl titanate, a titanium alkoxide. Used as a esterification and transesterification catalyst, as an olefin polymerisation catalyst, as an adhesion promoter, as a crosslinking agent for hydroxylic compounds and as a component of heat and corrosion resistant paints.
  • Tytan PBT has polymer structure with chemical formula as TixO y(OR) 4x-y. Tytan PBT is largely used in formulating heat and corrosion resistant paints. Tytan PBT can be used with zinc or alumina pigments to formulate paints suitable for application by brush or spray. It can also be used to formulate air-drying paint with silicone resins. Paint contains Tytan PBT is moisture sensitive during manufacture and storage. The film dries through hydrolysis of PBT to a thin layer of Ti-O-Si and then bond to the substrate. Once the film dried, it can stand up to 600 oC.